
1 / 5

3차시 Error Detection and Correction

3. Error Detection and Correction



2 / 24

학습에 앞서

§학습개요

– 데이터통신에서오류검출방식및정정방식을학습한다. 

§학습목표

– 오류검출및정정방식을설명하고, 동작을설명할수있어야한다.
– Hamming Code, CRC, Checksum 방식과동작을설명할수있어야
한다. 



3 / 41

1. Introduction

Let us first discuss some issues related, directly or 
indirectly, to error detection and correction.

Topics discussed in this section:
Types of Errors
Redundancy
Detection Versus Correction
Forward Error Correction Versus 
Retransmission
Coding
Modular Arithmetic



4 / 41

1. Introduction

§ Type of Errors 
– Single-bit Error: only 1 bit of a given data unit is changed from 1 to 0 

or from 0 to 1
– Burst Error: 2 or more bits in the data unit have changed. 

Figure 10.1  Single-bit error

Figure 10.2  Burst error of length 8



5 / 41

1. Introduction

§ Redundancy 
– To detect or correct errors, we need to send extra  (Redundancy) bit with data.

§ Detection Versus Correction
– The correction of errors is more difficult than the detection. In error detection, 

we are looking  only to see if any error has occurred.

§ Forward Error Correction Versus Retransmission
– Forward error correction is the process in which the receiver tries to guess the 

message by using redundant bits. If the number of errors is small, this is 
possible.

– Retransmission: The receiver detects the occurrence of an error and asks the 
sender to resend the message. 

§ Coding 
– Redundancy is achieved through various coding schemes.
– We can divide coding schemes into two broad categories : block coding and 

convolution coding. 



6 / 41

1. Introduction

Figure 10.3  The structure of encoder and decoder



7 / 41

1. Introduction

§ Modular Arithmetic
– Discuss a concept basic to computer science in general and to error detection and 

correction in particular: modular arithmetic 
– In modulo-N arithmetic, we use only the integers in the range 0 to N-1, inclusive.

– Modulo-2 Arithmetic
l Adding: 0+0=0 0+1=1 1+0=1 1+1=0
l Subtracting: 0-0=0 0-1=1 1-0=1 1-1=0

Figure 10.4  XORing of two single bits or two words



8 / 41

2. Block Coding

In block coding, we divide our message into blocks, each of k bits, 
called datawords. We add r redundant bits to each block to make the 
length n = k + r. The resulting n-bit blocks are called codewords.

Error Detection
Error Correction
Hamming Distance
Minimum Hamming Distance

Topics discussed in this section:



9 / 41

2. Block Coding

§ We divide our message into blocks, each of k bits, called datawords. 
§ We add r redundant bits to each block to make the length n = k + r. The 

resulting n-bit blocks are called codewords.
§ We have 2n-2k codewords that are not used. We call these codewords 

invalid or illegal.

Figure 10.5  Datawords and codewords in block coding



10 / 41

2. Block Coding

§ Error Detection
– 1. The receiver has a list of valid codewords.
– 2. The original codeword has changed to an invalid one.

– An error-detection code can detect only the types of errors for which it is 
designed; other types of errors may remain undetected.

Figure 10.6  Process of error detection in block coding



11 / 41

2. Block Coding

Example 10.2
§ Let us assume that k = 2 and n = 3. Table 10.1 shows the list of datawords and

codewords. Later, we will see how to derive a codeword from a dataword.
§ Assume the sender encodes the dataword 01 as 011 and sends it to the receiver.

Consider the following cases:
§ The codeword is corrupted during transmission, and  111 is received. This is not 

a valid codeword and is discarded.
§ The codeword is corrupted during transmission, and 000 is received. This is a 

valid codeword. The receiver incorrectly extracts the dataword 00. Two corrupted 
bits have made the error undetectable. 

Table 10.1  A code for error detection (Example 10.2)



12 / 41

2. Block Coding

§ Error Correction
– Error correction is much more difficult than error detection.
– In error correction the receiver needs to find the original codeword sent.
– We can see that the idea is the same as error detection but the checker 

functions are much complex.

Figure 10.7  Structure of encoder and decoder in error correction



13 / 41

2. Block Coding

§ Hamming Distance
– The Hamming distance between two words is the number of differences 

between corresponding bits.
– Example. 

l The Hamming distance d(000, 011) is 2 because 000 ⊕ 011 is 011 (two 
1’s) 

§ Minimum Hamming Distance
– The minimum Hamming distance is the smallest Hamming distance 

between all possible pairs in a set of words.
– Three parameters : any coding scheme needs to have at least three 

parameters:
l the codewords size n, 
l the dataword size k, 
l and the minimum Hamming distance dmin

– Minimum Distance for Error Detection
l To guarantee the detection of up to s errors in all cases, the minimum 

Hamming distance in a block code must be dmin= s+1  
– Minimum Distance for Error Correction

l To guarantee correction of up to t errors in all cases, the minimum 
Hamming distance in a block code must be dmin = 2t + 1



14 / 41

2. Block Coding

Figure 10.8  Geometric concept for finding dmin in error detection

To guarantee the detection of up to s errors in all cases, the minimum
Hamming distance in a block  code must be dmin = s + 1.



15 / 41

2. Block Coding

Figure 10.9  Geometric concept for finding dmin in error correction

To guarantee correction of up to t errors in all cases, the minimum 
Hamming distance in a block code must be dmin = 2t + 1.



16 / 41

3. Line Block Codes

Almost all block codes used today belong to a subset called linear
block codes. A linear block code is a code in which the exclusive
OR (addition modulo-2) of two valid codewords creates another
valid codeword.

Minimum Distance for Linear Block Codes
Some Linear Block Codes

Topics discussed in this section:



17 / 41

3. Line Block Codes

Simple parity-check code (n, k) where n = k+1

§ A Simple parity-check code is a single-bit error-detecting code 
in which n = k+1 with dmin =2.

§ A simple parity-check code can detect an odd number of erros. 
Table 10.3  Simple parity-check code C(5, 4)



18 / 41

3. Line Block Codes

Figure 10.10  Encoder and decoder for simple parity-check code

§ r0 = a3 + a2 + a1 + a0 (modulo-2)

§ s0 = b3 + b2 + b1 + q0 (modulo-2)



19 / 41

3. Line Block Codes

§Hamming Codes (n, k) where n = 2m – 1, k = n-m
– All hamming codes discussed in this book have dmin =3.
– The relationship between m and n in these codes is n = 2m – 1, k=n-m

– 1 bit error correction and several bits error detection
l n: the codewords size
l k: the datawords size
l m: n-k, redundant size

– We needs log2(n+1) bits to indicate the value of (n+1). Hence, 
m ≥ log2(n+1)

2m ≥ n+1 = m+k+1.

– We achieves n = 2m – 1 and k = n-m.



20 / 41

3. Line Block Codes

§Consider (11, 7) Hamming code.
– The data to be sent is ‘1100110’. 

– STEP 1: the hamming bits are inserted at 23, 22, 21, and 20 respectively.

– STEP 2: calculate the hamming bits

– STEP 3: complete the codewords

Decimal Binary   

11
10
6
5

1011
1010
0110⊕ 0101

Exclusive-OR 0010

1 1 0 0 0 1 1 0 0 1 0

11 10 9 8 7 6 5 4 3 2 1 위치

데이터



21 / 41

3. Line Block Codes

– At the receiver site, 
Case 1) if the following data is received, 

Do modulo-2 calculation as follows:

Because the result is 0, there is no error. 

1 1 0 0 0 1 1 0 0 1 0

11 10 9 8 7 6 5 4 3 2 1 위치

데이터

Decimal Binary   

11
10
6
5
2

1011
1010
0110
0101⊕ 0010

Exclusive-OR 0000



22 / 41

3. Line Block Codes

– At the receiver site, 
Case 1) if the following data is received, 

Do modulo-2 calculation as follows:

Because the result is 11, there is an error at the 11th bit. 

0 1 0 0 0 1 1 0 0 1 0

11 10 9 8 7 6 5 4 3 2 1 위치

데이터

Decimal Binary   

10
6
5
2

1010
0110
0101⊕ 0010

Exclusive-OR 1011



23 / 41

3. Line Block Codes

– Burst error correction using Hamming code 
l A Hamming code can only correct a single error or detect a double error.
l However, there is a way to make it detect a burst error as follows:

Figure 10.13  Burst error correction using Hamming code



24 / 41

4. Cyclic Codes

Cyclic codes are special linear block codes with one extra
property. In a cyclic code, if a codeword is cyclically shifted
(rotated), the result is another codeword.

• For example, if 1011000 is a codeword and we cyclically
left-shift, then 0110001 is also a codeword.

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

Topics discussed in this section:



25 / 41

4. Cyclic Codes

Cyclic Redundancy Check 

§ We simply discuss a category of cyclic codes called the cyclic redundancy 
(CRC) that is used in networks such as LANs and WANs.

Figure 10.14  CRC encoder and decoder



26 / 41

4. Cyclic Codes

Figure 10.15  Division in CRC encoder

Cyclic Redundancy Check 



27 / 41

4. Cyclic Codes

Figure 10.16  Division in the CRC decoder for two cases



28 / 41

4. Cyclic Codes

§Hardware Implementation 
– One of the advantages of a cyclic code is that the encoder and decoder 

can easily and cheaply be implemented in hardware by using a handful 
of electronic devices. 

Figure 10.17  Hardwired design of the divisor in CRC

The leftmost bit is not needed because 
the result of the operation is always 0.



29 / 41

4. Cyclic Codes

Figure 10.18  Simulation of division in CRC encoder



30 / 41

4. Cyclic Codes

§ General Design
– A general design for the encoder and decoder is shown in under Figure 

Figure 10.20  General design of encoder and decoder of a CRC code



31 / 41

4. Cyclic Codes

Polynomials 

§A pattern of 0s and 1s can be represented as a polynomial with 
coefficients of 0 and 1. The position of the bit; the coefficient shows the 
value of the bit 

§Degree of a Polynomial : the highest power in the polynomial
– For example, the degree of the polynomial x6+x+1 is 6.

§Adding, Multiplying, and Dividing 
– (x5+x4+x2) + (x6+x4+x2) = x6+x5

– x3 X x4 = x7

– x5 / x2 = x3

Figure 10.21   A polynomial to represent a binary word



32 / 41

4. Cyclic Codes

Figure 10.22  CRC division using polynomials

The divisor in a cyclic code is normally called the generator 
polynomial or simply the generator.



33 / 41

4. Cyclic Codes

Cyclic Code Analysis

§ We define the following, where f(x) is a polynomial with binary coefficients.

Dataword : d(x) Codeword : c(x) Generator : g(x)
Syndrome : s(x) Error : e(x)

In a cyclic code,
If s(x) ≠ 0, one or more bits is corrupted.
If s(x) = 0, either

a. No bit is corrupted. or
b. Some bits are corrupted, but the decoder failed to detect them.



34 / 41

4. Cyclic Codes

Digital Signal Service

§ Received codeword = c(x) + e(x)
§ The receiver divides the received codeword by g(x) to get the syndrome.

l The first term does not have a remainder.
l If the second term does not have a remainder, 

› e(x) = 0 or 
› e(x) is divisible by g(x). 

)(
)(

)(
)(

)(
codeword Received

xg
xe

xg
xc

xg
+=

In a cyclic code, those e(x) errors that are divisible by g(x) are not 
caught.



35 / 41

4. Cyclic Codes

§Standard Polynomials

§Other Cyclic Codes
– One of the most interesting codes is the Reed-solomon code used today 

for both detection and correction.

Table 10.7  Standard polynomials



36 / 41

5. Checksum

The last error detection method we discuss here is called the
checksum. The checksum is used in the Internet by several
protocols although not at the data link layer. However, we briefly
discuss it here to complete our discussion on error checking

Idea
One’s Complement
Internet Checksum

Topics discussed in this section:



37 / 41

5. Checksum

§ Idea
– For example,
– If the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 0, 6, 36), where 

36 is the sum of the original numbers. 
– To make the job of the receiver easier, we send (7, 11, 12, 0, 6, -36), where    

-36 is the negative (complement) of the sum, called the checksum. 

§One’s Complement
– One solution is to use one`s complement arithmetic. In this arithmetic, we 

can represent unsigned numbers between 0 and 2n -1 using only n bits.
– If the number has more than n bits, 

l STEP 1: the extra leftmost bits is added to the n rightmost bits 
(wrapping).

l STEP 2: one’s complement 
› A negative number can be represented by inverting all bits.
› This is the same as subtracting the number from 2n – 1. 



38 / 41

5. Checksum

§Example 10.22
– The data information is given by (7, 11, 12, 0, 6).

0  0  0  01  0  0  1
1  1  1  1



39 / 41

5. Checksum

§ Internet Checksum
– The sender calculates the checking by following these steps.

– The receiver uses the following steps for error detection.

Sender site:
1. The message is divided into 16-bit words.
2. The value of the checksum word is set to 0.
3. All words including the checksum are added using one’s complement addition.
4. The sum is complemented and becomes the checksum.
5. The checksum is sent with the data.

Receiver site:
1. The message (including checksum) is divided into 16-bit words.
2. All words are added using one’s complement addition.
3. The sum is complemented and becomes the new checksum.
4. If the value of checksum is 0, the message is accepted; otherwise, it is 
rejected.



40 / 41

5. Checksum

IP header



41 / 41

Summary

§ Errors can be categorized as a single-bit error or a burst 
error. A single-bit error has one bit error per data unit. A 
burst error has two or more bit errors per data unit. 

§ Redundancy is the concept of sending extra bits for use in 
error detection. 

§ Three common redundancy methods are parity check, cyclic 
redundancy check (CRC), and checksum. 

§ Errors are corrected through retransmission and by forward 
error correction. 

§ The Hamming code is an error correction method using 
redundant bits. The number of bits is a function of the length 
of the data bits. 


