HIOIEIT AL ES

bl B

5. Data Link Control(2/2)

OISR

- HIOIEHE 3 M08 ERAIARQ EZEEY &

fi0
o>

ol
o

StLt.

nd
=l

oy

210
— Il

- ARQ Z2E& SAE %50t SEHES 0l0HSH.
— Stop-and-Wait ARQ, Go-Back-N ARQ, Selective Repeat ARQ B &

(=)
E= St Staoit

2/24

1. Noisy Channels

Go—-Back—N ARQ

= To improve the efficiency of transmission, multiple frames must be in
transition while waiting for acknowledgment.

= Go-Back-N ARQ
— We can send several frames before receiving acknowledgments;
— We keep a copy of these frames until the acknowledgements arrive.

= Sequence Numbers

— The sequence numbers range from 0 to 2™-1.
— Forexample,ifm=4,SN={0,1,2,...,15,0,1, 2, ...}

In the Go-Back-N Protocol, the sequence numbers are modulo 2™,
where m is the size of the sequence number field in bits.

3 /34

1. Noisy Channels

= Sliding Window

— An abstract concept that defines the range of sequence numbers that is the
concern of the sender and receiver.

The send window is an abstract concept defining an imaginary box of
size 2™ - 1 with three variables: S;, S, and Sgjz.

®" The acknowledgements are cumulative, meaning that more than one
frame can be acknowledged by an ACK frame.

The send window can slide one
or more slots when a valid acknowledgment arrives.

1. Noisy Channels

Figure 11.12 Send window for Go-Back-N ARQ

S¢ Send window, S, Send window,
first outstanding frame next frame to send
1304075] 2 A 7 [8[oftoln[i2[13]14]15] 071
Frames already Frames sent, but not Frames that can be sent, Frames that
acknowledged acknowledged (outstanding) but not received from upper layer cannot be sent

>l<

Send window, size S, =2M - 1

€

Y

a. Send window before sliding

| 7 |8]9 10]11]12]13]14]15] 0] 1

b. Send window after sliding

5/ 34

1. Noisy Channels

= Receive Sliding Window
— The receive window slides only one slot at a time.

The receive window is an abstract concept defining an imaginary box
of size 1 with one single variable R,.
The window slides when a correct frame has arrived; sliding occurs
one slot at a time.

In Go-Back-N ARQ, the size of the send window must be less than 2™ ;
the size of the receiver window is always 1.

6/ 34

1. Noisy Channels

Figure 11.13 Receive window for Go-Back-N ARQ

R, Receive window, next frame expected

———pf==—=—p===—p=—=—=—p==—=p-=-=--= R i R —“—r—-‘—r---r---r---r--- — e —mp===p===p===

113 1 14'15i011'2 4 15161718 9 10! 1 12(13:1411510}1;

Y (e (e R (I Y [N —— ___.I.___l.___l.___l___l.___.i.___l___l___.l___ SR TN (P R p——

Frames already received

and acknowledged until the window slides

\ Frames that cannot be received
I

Y

a. Receive window

o fe R e ool SRS e Rttt |

M 1121131141151 0 1 1 1

i el e b Al o ade S daa s

b. Window after sliding

7/ 34

1. Noisy Channels

= Timers
— We use only one timer.

— The reason is that the timer for the first outstanding frame always expires
first; we send all outstanding frames when this timer expires.

= Acknowledgement
— The receiver sends a positive acknowledgement.
— If a frame is damaged or is received out of order,

e The receiver is silent and will discard all subsequent frames until it
receives the one it is expecting.

e After timer expires, the resends all outstanding frames.

— The receiver does not have to acknowledge each frame received. - It can
send one cumulative acknowledgement for several frames.

® Resending a Frame

— For example, the sender has already sent frame 6, but the timer for frame
3 expires.

— The sender goes back and sends frames 3, 4, 5, and 6 again.

8 /34

1. Noisy Channels

Figure 11.14 Design of Go-Back-N ARQ

First g Next R. Next
outstanding ‘l'" to send " toreceive
Sender Receiver
Data frame ACK frame Delivat
Network Get data data Network
| seqNo ackNo A
Y I
Data link Data link
LY .

Physical | Receive Send Receive Send | physical
frame frame frame frame
_>.

T T T

-— [(- -
Evahs Request from
network layer
Repeat forever \ @ Repeat forever
Algorithm for sender site «— Time-out Algorithm for receiver site
Event:
A A

Notification from

Event: physical layer Event:

Notification from
physical layer

9/ 34

1. Noisy Channels

Figure 11.15 Window size for Go-Back-N ARQ
As an example, m = 2 and all acknowledgments are lost

Sender Receiver Sender Receiver

S¢S
i & R > Sn
1(2]3 I, n £
@ B, ® 560 o, |
S s 1]2]3] 0
e < 5 s, D
N Ky b | R
q, n
S o EIEICI)

Q
5
A

-
3
T @
@]
C
~+
!: !3
Ry Ry
<A
) D
3:0
o
LA N
& iy
o
Ry n
Q'}' 3
AV
=X
=
333
= o]
=)

0[1]2

wn
R
wn
3
?
W
o
—
N

Y { Correctly A (R
discarded e -Jg_l ra’heo n
Time-out m
Y Y Erroneously
accepted
a. Window size < 2™ b. Window size =2™M

10/ 34

1. Noisy Channels

Algorithm 11.7 Go-Back-N sender algorithm

16, = 2" - 1;

2 Sg = 0;

3 8, = 0;

4

5 while (true) //Repeat forever

6 |{

7 | WaitForEvent () ;

8 if (Event (RequestToSend)) //A packet to send
9 {

10 if(S,-S¢ >= S,) //If window is full
11 Sleep():;

12 GetData() ;

13 MakeFrame (S,) ;

14 StoreFrame(S,) ;

15 SendFrame (S,) ;

16 S, = S, + 1;

17 if (timer not running)

18 StartTimer () ;

19 }

20

11/ 34

1. Noisy Channels

Algorithm 11.7 Go-Back-N sender algorithm

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

if (Event (ArrivalNotification))
{
Receive (ACK) ;
if (corrupted (ACK))
Sleep() ;
if ((ackNo>S¢) && (ackNo<=S,))
While (Sg <= ackNo)
{
PurgeFrame (S¢) ;
Sg = S¢g + 1;
}
StopTimer () ;

if (Event (TimeOut))
{
StartTimer () ;
Temp = S¢;
while(Temp < S.;):
{
SendFrame (S¢) ;
Sg = Sg + 1;
}

(continued)
//ACK arrives

//If a valid ACK

//The timer expires

1. Noisy Channels

Algorithm 11.8 Go-Back-N receiver algorithm

1 R, = 0;

2

3 while (true) //Repeat forever

4 [

5 WaitForEvent () ;

6

7 if (Event (ArrivalNotification)) /Data frame arrives
8 {

9 Receive (Frame) ;

10 if (corrupted (Frame))

11 Sleep();

12 if (segNo == R,) //If expected frame
13 {

14 DeliverData() ; //Deliver data

15 R, = R, + 1; //Slide window

16 SendACK (R,) ;

17 }

18 }

19 |}

13/ 34

i Example 11.6

Figure 11.16 shows an example of Go-Back-N. This is an example of
a case where the forward channel is reliable, but the reverse is not.
No data frames are lost, but some ACKs are delayed and one is lost.
The example also shows how cumulative acknowledgments can help
if acknowledgments are delayed or lost. After initialization, there are
seven sender events. Request events are triggered by data from the
network layer, arrival events are triggered by acknowledgments from
the physical layer. There is no time-out event here because all
outstanding frames are acknowledged before the timer expires. Note
that although ACK 2 is lost, ACK 3 serves as both ACK 2 and ACK 3.

14 /34

1. Noisy Channels

Figure 11.16 Flow diagram for Example 11.6

Start

timer

®
Stop

timer

St [Sn
Initial - [0]1]2]3]4{5|6]7]0[1]2]
St Sn
Request |1 1]2(3]4[5]6]

Arrival

Request

Request

Request

Arrival

Arrival

51 5n

St Sn
OMll2[3]4[5]6[7]0]1]2]
St Sn

0NN 3]4[5]6(7]0]1]2]
¢ S

n
o JRNR 4|5]6]7]0[1]2]

Sf Sn

o[1]2[@4]s]6]7]o[1]2]

Sf Sn

0[1]2]3]4]5]6]7]0[1]2]

Sender

Receiver

Time

n

i1 [2]3]4]5]6]7] Initial

2(3]4(5|6]|7]| Arrival

R

n

O|1i3|4|5|6|7| Arrival

Rn

0f1 2‘4 516|7| Arrival

R

n

0|1 |2|3-5|6|7| Arrival

34

i Example 11.7

Figure 11.17 shows what happens when a frame is lost. Frames 0, 1, 2, and
3 are sent. However, frame 1 is lost. The receiver receives frames 2 and 3,
but they are discarded because they are received out of order. The sender
receives no acknowledgment about frames 1, 2, or 3. Its timer finally
expires. The sender sends all outstanding frames (1, 2, and 3) because it
does not know what is wrong. Note that the resending of frames 1, 2, and 3
is the response to one single event. When the sender is responding to this
event, it cannot accept the triggering of other events. This means that when
ACK 2 arrives, the sender is still busy with sending frame 3.

The physical layer must wait until this event is completed and the data link
layer goes back to its sleeping state. We have shown a vertical line to
indicate the delay. It is the same story with ACK 3,; but when ACK 3 arrives,
the sender is busy responding to ACK 2. It happens again when ACK 4
arrives. Note that before the second timer expires, all outstanding frames
have been sent and the timer is stopped.

16/ 34

1. Noisy Channels
Figure 11.17 Flow diagram for Example 11.7

Sender Receiver
Start -
timer S Sn : ; Rn
@ nitial [0[1]2]3[4[5]6[7]0[1]2] ! : 1]2[3[4]5]6]7] Initial
B 15 : :
§on :

Request
Arrival

S¢
|
o[1[23]4]5]6[7]o[1[2] |
St [Sn | |
Request [ofl2[3]4[56]7]o[1]2] % |
I y !
3 S, | :
|
e . _ [

Request |0] 3[4]5[6[7]0]1]2] Arrival
Sf Sn
Request |0] 4]5[6]7]0]1]2] Arrival

Time-out
Time-out :
Restart 0] .3[4[5|6|7|Arr|val
f 7 R,
4|5l6]7]0[1|2}> ‘
! o[1[2[8l4[5|6]7] Arrival
S Sy | .
0 7]0][1]2] . -
5 S, o[1]2]3&]5]6]7] Arriva
Arrival [0]1] !
:
|
Arrival :
I
|
I
S. Arrival :
top
timer * * 17/ 34
Time Time

1. Noisy Channels

Stop-and-Wait ARQ is a special case of Go-Back-N ARQ in which the
size of the send window is 1.

18/ 34

1. Noisy Channels

Selective Repeat ARQ

= Selective Repeat ARQ
— Does not resend N frames when just one frame is damaqged;

— Only the damaged frame is resent.

= \Nindows
— Two windows: a send window and a receive window
— Size: 2™ (the two windows has the same size)

— The smaller window size means less efficiency but fewer duplicate
frames

In Selective Repeat ARQ, the size of the sender and receiver window
must be at most one-half of 2™.

19/34

1. Noisy Channels

Figure 11.18 Send window for Selective Repeat ARQ

Send window, first S, S, Send window,
outstanding frame next frame to send

3014175 (4] 5]6]7 1891101 [12}13]14]15/ 01
Frames already | Frames sent, but Frames that can Frames that
acknowledged | not acknowledged be sent cannot be sent
> r14
Ssize = 2m!

A
A

20/ 34

1. Noisy Channels

Figure 11.19 Receive window for Selective Repeat ARQ

R Receive window,
next frame expected

n

—_— - —_— - —_— - —_— - e el R Ll |

M 1121137141151 0 0 1

:13”4!15#0!1*2

i O S | R ——— | ——

Frames that can be received
Frames already and stored for later delivery. Frames that
received Colored boxes, already received cannot be received
m-1
- Rsize 2 -

21/ 34

1. Noisy Channels

Figure 11.20 Design of Selective Repeat ARQ

First

Next

outstanding " to send

R Next
n i
to receive

Sender Receiver
Data frame ACK or NAK Deliver
Network Get data | data Network
| seqNo ackNo A
| or I
Data link riaklie Data link
Physical | Receive Send Receive Send | physical
frame frame frame frame
—>.
| — | W — [W —) I — |
<[| .
Y Request from
network layer
Repeat forever Y . Re peat forever

Algorithm for sender site

A

Event:

Notification from
physical layer

Time-out

Event:

Algorithm for receiver site

A

Event:

Notification from

physical layer

22 / 34

1. Noisy Channels

Figure 11.21 Selective Repeat ARQ, window size
As an example, m = 2 and all acknowledgments are lost

Sf Sn

@ 12[3] Lo,

Sf I_Sn
23] [Noame

Sf |—Sn
® iz 3 3
Time-out W‘k
0(112(3

Sender Receiver

Y [Correctly
discarded

Sender

Y

0 is the part of window

2(3]0] (~Lram, |
2(3]o]1
S |‘Sn }
S } 07 EE0
® h3 o] L Fr. R
Time-out

%
O1(2(3 1041

Receiver

Erroneously
accepted

a. Window size = 2™1

b. Window size > 2™

23/ 34

1. Noisy Channels

Algorithm 11.9 Sender-site Selective Repeat algorithm

-

CwoJo ULl b WN

R R RPRRRRRRR
O NoU W R

=
O

Sw - 2m—1 ;
Sg = 0;
S, = 0;
while (true)
{
WaitForEvent () ;
if (Event (RequestToSend))
{
if(S,-S¢ >= 8,)

Sleep();
GetData() ;
MakeFrame (S,) ;
StoreFrame (S,) ;
SendFrame (S,) ;
S, = S, + 1;
StartTimer (S,) ;

//Repeat forever

//There is a packet to send

//If window is full

24 / 34

1. Noisy Channels

Algorithm 11.9 Sender-site Selective Repeat algorithm
20 if (Event (ArrivalNotification)) //ACK arrives
21 {

22 Receive (frame) ; //Receive ACK or NAK
23 if (corrupted(frame))

24 Sleep();

25 if (FrameType == NAK)

26 if (nakNo between S and S,)

27 {

28 resend (nakNo) ;

29 StartTimer (nakNo) ;

30 }

31 if (FrameType == ACK)

32 if (ackNo between Sy and S,)

33 {

34 while(s¢ < ackNo)

35 {

36 Purge(s¢) ;

37 StopTimer (s¢) ;

38 Sg = S¢ + 1;

39 }

40 }

41 }

(continued)

1. Noisy Channels

Algorithm 11.9 Sender-site Selective Repeat algorithm

42
43
44
45
46
47
48

if (Event (TimeOut (t)))

{
StartTimer (t) ;

SendFrame (t) ;
}

//The timer expires

(continued)

26/ 34

1. Noisy Channels

Algorithm 11.10 Receiver-site Selective Repeat algorithm

il Ep = 0;
akSent = false;

2

3 |[AckNeeded = false;

4 Repeat (for all slots)

5 Marked(slot) = false;

6

7 while (true) //Repeat forever
8 |{

9 WaitForEvent () ;

10

11 if (Event (ArrivalNotification)) /Data frame arrives
12 {

13 Receive (Frame) ;

14 if (corrupted (Frame))&& (NOT NakSent)

15 {

16 SendNAK (R,) ;

17 NakSent = true;

18 Sleep();

19 }

20 if (segNo <> R,)&& (NOT NakSent)

21 {

22 SendNAK (R,) ;

1. Noisy Channels

Algorithm 11.10 Receiver-site Selective Repeat algorithm

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

NakSent = true;

if ((segNo in window) &&(!Marked (segNo))
\§

StoreFrame (segNo)

Marked (segNo)= true;

while (Marked(R,))
{
DeliverData (R,) ;
Purge (R,) ;
Ry = Ry + 1;
AckNeeded = true;
}

if (AckNeeded) ;

{

SendAck (R,) ;
AckNeeded = false;
NakSent = false;

1. Noisy Channels

Figure 11.22 Delivery of data in Selective Repeat ARQ

R, R, ackNo sent: 3

a. Before delivery b. After delivery

29/ 34

i Example 11.8

This example is similar to Example 11.3 in which frame 1 is lost. We show how
Selective Repeat behaves in this case. Figure 11.23 shows the situation. One main
difference is the number of timers. Here, each frame sent or resent needs a timer,
which means that the timers need to be numbered (0, 1, 2, and 3). The timer for
frame 0 starts at the first request, but stops when the ACK for this frame arrives.
The timer for frame [starts at the second request, restarts when a NAK arrives,
and finally stops when the last ACK arrives. The other two timers start when the
corresponding frames are sent and stop at the last arrival event.

At the receiver site we need to distinguish between the acceptance of a frame and
its delivery to the network layer. At the second arrival, frame 2 arrives and is
stored and marked, but it cannot be delivered because frame 1 is missing. At the
next arrival, frame 3 arrives and is marked and stored, but still none of the frames
can be delivered. Only at the last arrival, when finally a copy of frame I arrives,
can frames 1, 2, and 3 be delivered to the network layer. There are two conditions
for the delivery of frames to the network layer: First, a set of consecutive frames
must have arrived. Second, the set starts from the beginning of the window.

30/ 34

i Example 11.8

Another important point is that a NAK is sent after the second arrival, but not after
the third, although both situations look the same. The reason is that the protocol
does not want to crowd the network with unnecessary NAKs and unnecessary
resent frames. The second NAK would still be NAK1 to inform the sender to resend
frame 1 again; this has already been done. The first NAK sent is remembered
(using the nakSent variable) and is not sent again until the frame slides. A NAK is
sent once for each window position and defines the first slot in the window.

The next point is about the ACKs. Notice that only two ACKs are sent here. The
first one acknowledges only the first frame,; the second one acknowledges three
frames. In Selective Repeat, ACKs are sent when data are delivered to the network
layer. If the data belonging to n frames are delivered in one shot, only one ACK is
sent for all of them.

31/34

1. Noisy Channels

Fioure 11.23 Flow diaoram for Examnle 11.8

Sender Receiver

: A] (8 g

S

Initial

0 S¢

Request

Arrival

. Request

. Request
. Request

. Arrival

® © @ Arrival

n
o[1]2[3]4[5[6[7]0] ! 01112|3]4]5]6]7] Initial
|
|

Sn

! —>{Frameo

516|7| Arrival

Frame O
delivered

7| Arrival

7| Arrival

n

3|4|5|6{7]| Arrival

Frames 1,2, 3
delivered

32/ 34

1. Noisy Channels

Piggybacking

= When a frame is carrying data from A to B, it can also carry control
information about arrived (or lost) frames from B.

Figure 11.24 Design of piggybacking in Go-Back-N ARQ

Send Receive Receive Send
window window window window
ackNo
Network | Deliver Get Deliver Get Network
* | Frame A |
| Y seqNo | Y
Data link Data link
Physical | Receive Send Receive Send [physical
frame frame frame frame
I - —— —> I

T Request from - Request from
network layer network layer
Repeat forever vy . . Repeat forever vy
A[gofithm fbr‘ : { Time-out | | Time-out | Algo"rﬂ:hm fof)
sending and receiving L | sending and receiving
Event: Event: =
A A
Event: Notification from Event Notification from
| physical layer | physical layer 33/ 34

® Error control is both error detection and error correction.

" |n Stop-and-Wait ARQ, the sender sends a frame and
waits for an acknowledgment from the receiver before
sending the next frame.

" |n Go-Back-N ARQ, multiple frames can be in transit at
the same time. If there is an error, retransmission begins
with the last unacknowledged frame even if subsequent
frames have arrived correctly. Duplicate frames are
discarded.

" |n Selective Repeat ARQ, multiple frames can be in
transit at the same time. If there is an error, only the
unacknowledged frame is retransmitted.

" Flow control mechanisms with sliding windows have
control variables at both sender and receiver sites.

34/ 34

