대기행렬 이론 개론

II. Distribution Functions

학습에 앞서

■ 학습 목표

- Order statics 분포를 이해하고, 통신네트워크에서의 응용을 학습한다.
- 지수 분포, 얼랑 분포, 감마 분포 함수들을 학습한다.
- 지수 분포와 포아송 프로세스의 기본 개념 및 응용을 학습한다.
- 목차
 - 1. Order Statistics
 - 2. Common Distributions
 - 3. Poisson Process

1. Order Statistics (1/4)

Let $X_{(n)}$ denote the *n*th smallest of element of the sample *X*. This statistics is called the *order statistic* of order *n*.

For example, suppose that four numbers are observed or recorded, resulting in a sample of size n = 4. If the sample values are

The order statistics would be denoted

$$x_{(1)} = 3; \ x_{(2)} = 6; \ x_{(3)} = 8; \ x_{(4)} = 9$$

The **first order statistic** (or *smallest order statistic*) is always the *minimum* of the sample, that is,

$$X_{(1)} = \min\{X_1, \ldots, X_n\}$$

where, following a common convention, we use upper-case letters to refer to random variables, and lower-case letters (as above) to refer to their actual observed values.

Similarly, for a sample of size *n*, the *n*th order statistic (or *largest order statistic*) is the *maximum*, that is,

$$X_{(n)} = \max\{X_1,\ldots,X_n\}.$$

Distribution of max and min of independent random variables

Let X_1, X_2, \ldots, X_n be independent random variables. Distributions of the maximum and the minimum are

$$P(\max(X_1, \dots, X_n) \le x) = P(X_1 \le x, \dots, X_n \le x)$$

= $P(X_1 \le x) \dots P(X_n \le x)$ (independence)
= $F_1(x) \dots F_n(x)$
$$P(\min(X_1, \dots, X_n) > x) = P(X_1 > x, \dots, X_n > x)$$

= $P(X_1 > x) \dots P(X_n > x)$ (independence)
= $G_1(x) \dots G_n(x)$

where $F_i(x)$ is the distribution function and $G_i(x)$ is the tail distribution.

Problem High system throughput can be achieved by exploiting multiuser diversity and prioritized scheduling users with high instantaneous channel conditions when a base station (BS) has channel state information (CSI). [11–13, 15]. There are *K* active users and each user experiences independent fading. The channel of user *k* is assumed to be a block Rayleigh fading model with the probability density function given by f_{γ_k} , where γ_k is the received signal-to-noise ratio (SNR) of user *k* and $\overline{\gamma_k}$ is the average received SNR of user *k*.

- 1. When all users feeds back their CSI to the BS, determine the average sum-rate.
- 2. When each user feeds back its CSI to the BS if and only if $\gamma_k \ge \gamma_{th}$, where assume that the users experience i.i.d. fading. Determine the average sum-rate.

Order Statistics (4/4)

Solution

$$C = \int_0^\infty \log_2(1+\gamma^*) f_{\gamma^*}(\gamma) d\gamma$$

where γ^* is the SNR of the selected user.

1. When all users feeds back their CSI,

$$f_{\gamma^*}(\gamma) = \sum_{k=1}^K f_{\gamma_k}(\gamma) \prod_{l=1, l \neq k}^K F_{\gamma_k}(\gamma)$$

2. When each user feeds back its CSI if and only if $\gamma_k \geq \gamma_{th}$,

$$\begin{split} F_{\gamma^*}(\gamma) &= \sum_{k=1}^K \binom{K}{k} (F_{\gamma}(\gamma_{th}))^{K-k} \left(F_{\gamma}(\gamma) - F_{\gamma}(\gamma_{th}) \right)^k \\ f_{\gamma^*}(\gamma) &= \sum_{k=1}^K \binom{K}{k} (F_{\gamma}(\gamma_{th}))^{K-k} k f_{\gamma}(\gamma) \left(F_{\gamma}(\gamma) - F_{\gamma}(\gamma_{th}) \right)^{k-1}, \quad \gamma > \gamma_{th} \\ f_{\gamma^*}(\gamma) &= \left(F_{\gamma}(\gamma_{th}) \right)^{K-1} f_{\gamma}(\gamma), \quad \gamma \leq \gamma_{th} \end{split}$$

Probability Distribution of Discrete r.v.

Distribution	Description	pmf	Mean	Variance
Bern(p)	Bernoulli distribution	P(X=1) = p,	p	pq
		P(X=0) = 1 - p	p	pq
Bin(n,p)	Binomial distribution	$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	npq
Geom(p)	Geometric distribution: num- ber of trials until the outcome is the front side (coin tossing)	$P(X = k) = (1 - p)^{k - 1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$
Poisson(λ)	Poisson distribution	$P(X = k) = \frac{\lambda^k \exp^{-\lambda}}{k!}$	λ	λ

Common Distributions (2/2)

Probability Distribution of Continuous r.v.

Distribution	Description	pdf	Mean	Variance
Unif(<i>a</i> , <i>b</i>)	Uniform distribution	$f(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Exp(\lambda)$	Exponential distribution	$f(x) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Erlang (n, λ)	Erlang distribution of order <i>n</i>	$f(x) = \frac{(\lambda x)^{n-1}}{(n-1)!} \lambda e^{-\lambda x} x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Exponential Distribution, $Exp(\lambda)$ (1/2)

The density of an exponential distribution with parameter λ is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

The distribution function is

$$F(x) = 1 - e^{-\lambda x}, \quad x \ge 0.$$

For this distribution, we have

$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$

An important property of an exponential random variable *X* with parameter λ is the *memo-ryless property*. This property states that for all $x \ge 0$ and $t \ge 0$,

$$P(X > t + x | X > t) = \frac{P(X > t + x, X > t)}{P(X > t)}$$
$$= \frac{P(X > t + x)}{P(X > t)}$$
$$= \frac{e^{-\lambda(t+x)}}{e^{-\lambda t}} = e^{-\lambda x} = P(X > x)$$

Exponential Distribution, $Exp(\lambda)$ (2/2)

The ending probability of an exponentially distributed interval

Assume that a call with $Exp(\lambda)$ distributed duration has lasted the time *t*. What is the probability that it will end in an infinitesimal interval of length *h*?

$$P(X \le t + h | X > t) = P(X \le h) \quad \text{(memoryless)}$$
$$= 1 - e^{-\lambda h}$$
$$= 1 - (1 - \lambda h + \frac{1}{2}(\lambda h)^2 - \cdots)$$
$$= \lambda h + o(h)$$

The ending probability per time unit = λ (constant!)

$$P(X = k) = pq^{k-1}, \quad k = 1, 2, \cdots$$

$$P(X = j + k | X > j) = \frac{P(X = j + k)}{P(X > j)}$$
$$= \frac{pq^{j+k-1}}{\sum_{i=j+1}^{\infty} pq^{i-1}}$$
$$= pq^{k-1}, \quad k = 1, 2, \cdots$$
$$= P(X = k) \text{ not a function of } j$$

Erlang Distribution, $Erlang(n, \lambda)$ (1/2)

X is the sum of *n* independent random variables with the distribution $Exp(\lambda)$.

$$X = X_1 + X_2 + \dots + X_n \quad X_i \sim Exp(\lambda)$$

The Laplace transform is

$$f^*(s) = \left(\frac{\lambda}{\lambda + s}\right)^n$$

By inverse transform (or by recursively convoluting the density function) one obtains the pdf of the sum X

Problem The system consists of two servers. Customers arrive with $Exp(\lambda)$ distributed interarrival times. Customers are alternately sent to servers 1 and 2. Determine the interarrival time distribution of customers arriving at a given server.

Solution The interarrival time distribution of customers arriving at a given server is $Erlang(2, \lambda)$. If $\lambda = 1$, the average interarrival time of customers is 1 second and the average interarrival time of customers at a server is $E(X) = 2/\lambda = 2$ second.

The formula for the pdf of the Erlang distribution can be generalized, from the integer parameter *n*, to arbitrary real numbers by replacing the factorial (n-1)! by the gamma function $\Gamma(n)$:

$$f(x) = \frac{(\lambda x)^{p-1}}{\Gamma(p)} \lambda e^{-\lambda x}$$

where Gamma function, $\Gamma(p)$, is defined by

$$\Gamma(p) = \int_0^\infty e^t t^{p-1} dt$$

3. Poisson Process (1/3)

General

A Poisson process is one of the simplest interesting stochastic processes.

Definition The stochastic process is a Poisson process with rate $\lambda > 0$ if

- 1. *P*(a single event in an interval of duration Δt) = $\lambda \Delta t + o(\Delta t)$
- 2. *P*(more than one event in an interval of duration Δt) = $o(\Delta t)$
- 3. The numbers of events occurring in nonoverlapping intervals of time are independent of each other

where $o(\Delta t)$, $(\Delta t \to 0)$, is a shorthand notation for a function, $f(\Delta t)$ say, for which $\lim_{\Delta t \to 0} f(\Delta t) / \Delta t = 0$. Hence, for small Δt ,

$$P(\operatorname{arrival} \operatorname{in}(t, t + \Delta t]) \approx \lambda \Delta t.$$

Result Let $P_k(t)$ be the probability that exactly *k* events occur in an interval of length *t*, namely, $P_k(t) = P(N(t) = k)$. We have, for each $k \in \mathbb{N}$, $t \ge 0$,

$$P_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}.$$

The mean and variance are equal to

$$E(N(t)) = \lambda t, \ Var(N(t)) = \lambda t$$
 15

Counting process

With a slight abuse of notation, N(t), the number of events of a Poisson process in an interval of length t, is sometimes called a Poisson process. Processes like the (continuous-time, discrete-space) stochastic process $(N(t), t \ge 0)$ (or simply N(t)) are called *counting processes*.

The counter tells the number of arrivals that have occurred in the interval (0,t) or, more generally, in the interval (t_1,t_2) .

 $\begin{cases} N(t) = \text{number of arrivals in the interval } (0,t) \text{ (the stochastic process we consider)} \\ N(t_1,t_2) = \text{number of arrival in the interval}(t_1,t_2) \text{(the increment process } N(t_2) - N(t_1)) \end{cases}$

Poisson Process (3/3)

Connection between Poisson process and the exponential distribution

Result Consider the time τ that elapses between the occurrence of two consecutive events in a Poisson process. For each $x \ge 0$

$$P(\tau \le x) = 1 - e^{-\lambda x}.$$

Proof. The proof is very simple. We have

 $P(\tau > x) = P(\text{no event in an interval of length } x)$ = $e^{-\lambda x}$

from Result Therefore, $P(\tau \le x) = 1 - e^{\lambda x}$ for $x \ge 0$.

In summary, the sequence $(\tau_n, n = 1, 2, \dots)$ of interevent times of a Poisson process with rate λ is a sequence of mutually independent r.v.'s, each being exponentially distributed with parameter λ .

Superposition (Merging)

Suppose that $N_1(t)$ and $N_2(t)$ are two independent Poisson processes with respective rates λ_1 and λ_2 . Then the sum $N_1(t) + N_2(t)$ of the two processes is again a Poisson process with rate $\lambda = \lambda_1 + \lambda_2$.

Namely, the superposition of two independent Poisson processes with rates λ_1 and λ_2 is a Poisson process with rate $\lambda = \lambda_1 + \lambda_2$.

Properties of the Poisson Process (2/2)

Random selection

If a random selection is made from a Poisson process with intensity λ such that each arrival is selected with probability p, independently of the others, the resulting process is a Poisson process with intensity $p\lambda$.

Random splitting

Suppose that A(t) is a Poisson process with rate λ and that each arrival is marked with probability p independent of all other arrivals. Let $N_1(t)$ and $N_2(t)$ denote respectively the number of marked and unmarked arrivals in [0,t]. Then $N_1(t)$ and $N_2(t)$ are both Poisson processes with respective rates $p\lambda$ and $(1-p)\lambda$. And these two processes are independent.

Poisson Arrivals See Time Average (PASTA)

Consider an arbitrary system which spends its time in different states E_j . Arrivals to the system constitute a Poisson process with intensity λ . These arrivals induce state transitions in the system.

• The probability of the state as seen by an outside random observer

 $\pi_{j} = \text{probability that the system is in the state } E_{j} \text{ at a random instant}$ $= P(\text{there are } E_{j} \text{ states in system})$ $= \lim_{T \to \infty} \frac{\text{total time that there are } E_{j} \text{ states in system in } [0, T]}{T}$

• The probability of the state seen by an arriving customer

 π_j^* = probability that the system is in the state E_j just before (a randomly chosen) arrival = $P(\text{an arrival sees } E_j \text{ state in system})$

In the case of a Poisson arrival process it holds

$$\pi_j = \pi_j^*$$

The Hitchhiker's Paradox (1/2)

The setting of the paradox is the following

- Cars are passing a point of a road according to a Poisson process.
- The mean interval between the cars is 10 min.
- A hitchhiker arrives to the roadside point at random instant of time.
- What is the mean waiting time \overline{W} until the next car.

The interarrival times in a Poisson process are exponentially distributed. From the memoryless property of the exponential distribution it follows that the (residual) time to the next arrival has the same $\text{Exp}(\lambda)$ distribution and the expected time is thus $\overline{W} = 10$ min. This appears paradoxical. Why isn't the expected time 5 min? Is there something wrong? Answer: No, the expected time is indeed $\overline{W} = 10$ min.

The Hitchhiker's Paradox (2/2)

Consider a long period of time t. The waiting time to the next car arrival $W(\tau)$ as the function of the arrival instant of the hitchhiker τ is represented by the sawtooth curve in the figure. The mean waiting time is the average value of the curve.

where X_i is the interarrival time. As $t \to \infty$ the number of the triangles *n* tends to t/\overline{X} .

$$\overline{W} = \frac{1}{\overline{X}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} X_i^2 = \frac{1}{2} \frac{X^2}{\overline{X}}$$

For exponential distribution, $\overline{X^2} = (\overline{X})^2 + \underbrace{V(X)}_{(\overline{X})^2} = 2(\overline{X})^2$ thus $\overline{W} = \overline{X}$.

Summary

- Order Statistics
 - When $X_{(n)}$ denotes the nth smallest of element of the sample X. This statistics is called the order statistic of order n.
- Common Distributions
 - Exponential Distribution: memoryless property
 - Geometric Distribution
 - Erlang Distribution
- Poisson Process
 - Poisson process vs. exponential distribution
 - Properties: superposition, Random selection, Random splitting
 - PASTA