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1. Continuous-Time Birth-Death Process

Definition A birth and death process (X(7).r > 0) is a continuous-time discrete-space
(with state-space N) Markov process such that

. P(X(t+Ar) =i+ 1|X(r) =i) = LAt +0(At),i >0

2.P(X(t+At)=i—1|X(t) =i) = WAt +0(At), i > 1

3.PX(t+Ar)=ilX(t)=i)=1— (A +u;)At +0(Ar), i > 0.

The r.v. X(7) may be interpreted as the size of the population at time 7. In that case, 4; > 0

gives the birth-rate when the size of the population is i and u; > 0 gives the death-rate when
the size of the population is i with i > 1. We assume that py = 0. []
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State transition rate diagram for the birth-death process



Steady-state Probability (1/2)

Transition rates

A; when j =i+ 1 probability of birth in interval Ar is A;At
g i=§ mifj=i—1 probability of death in interval Af is W;A;t
0 otherwise when the system is in state i

Let () = P(X(f) = i). The time-dependent state probability vector 7(z) is determined
by the equation

d
L 21) = 7(1)-Q
where
e o 0 T
/Hl — (A + 1) A 0
Q- 0 e —(ltw) A 0
: 0 13 —(Az +3) A3
\ 5 0 My —(Ag+114) )



Steady-state Probability (2/2)

Or, from Definition fori > 1, we have

Ti(t+At) = (Ai1At +0(At)) w1 (t) + (Hir1 At 4 0(At)) 7 ()
+ (1 — (Ai + ui) At +o(At)) mi(t) + o(At)
(¢t + At) — m;(¢)

Aljglo i = A1 (8) + i1 i1 (8) — (A + i) mi(2)
d
Em(?‘) = Ai—1mi—1(t) + Ui 1 i () — (As+ i) () -
* ~~ Y N — —
flows in flows out

An interesting question is the following: what happens when ¢t — co. In other words, we are
now interested in the equilibrium behavior, if it exists. Assume that

= rli_}rg T (1)

Then, in steady-state,
0= 171+ Unr1 i1 — (Ai + i)



Balance Equations (1/2)

Result (Balance equations of a birth and death process)

Aoy = W T
(Ai + )7 = A1 iy + M1 i fori> 1

the probability flow out of a state = the probability flow into that state




Balance Equations (2/2)

- Ao
Ty, = —7o
Hi
Ao
T = To
Ly o
 AoAr--Ai i T
L, — 7T yIry

0 — :
Mipo - i [Ti— Mk

and from the normalization condition,




Example: A Single Server System (1/2)

e constant arrival rate A (Poisson arrivals)
e stopping rate of the service u (exponential distribution)

The states of the system {O server free

1 server busy

- -\ o
"

~ Exp(n) ~Exp(%)




Example: A Single Server System (2/2)

{;;,nom = —Amo(t) + um ()

A
Y
%751(” = Amy(t) — um(r) @1\_/ @
L

By adding both sides of the equations

& (Tl) + 1 (1) =0 = (1) 41 (1) = 1 = m(1) = 1~ (1)

: d
Eﬁo(f) + (A +p)m(t) = pu = o (e(.lﬂiﬁﬂ:ﬂ(f)) — pelA+n
)= gm Tt (%(0) —ﬁ) g—Atu)
A 2
mltl= —— <+ |m0--———] g
1 (1) Tt i ( 1(0) 7L+,u) il
) A ” decays expo-
equilibrium deviation from nentially
distribution the equilibrium



2. The M/M/I Queue

®  |ntroduction

In this queueing system the customers arrive according to a Poisson process with
rate A. The time it takes to serve every customer is exponentially distributed with a
mean of 1/u. The service times are supposed to be mutually independent and further
independent of the interarrival times.

When a customer enters an empty system his service starts at once; if the system
is nonempty the incoming customer joins the queue and waits for service. When a
service completion occurs, a customer from the queue, if any, enters the service facility
at once to get served.
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State Transition Rate Diagram

System state: s(i), where i is the number of customers in the system.
Arrival process: ~ PP(A).

Service process: ~ Exp(1L).

Steady-state probability: ;, i =0,1.2,---.

A A A A
e ( : o I ]
u u u u
State transition rate diagram for M /M /1

The process of M /M /1 is a birth-death process with birth rate A; = A and with
death rate u; = u.
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Steady-state Probability

Result (Balance equations for M /M /1) In steady-state, we have

ATy = pm
(A+u)m =A% +umyy, i>1

and from the normalization condition,

=0 g

e~ EE)

Consequently, where p is the traffic intensity!, which is given by

(D) et

=(1—p)p . because the number of services is ¢ = 1 and « is the offered load.
12



Performance Measure (1/2)

Result (Performance Measure for M /M /1)

e Average number of customers in the system:

L=EN)=Y im=Y ip'(1—p)= =
i=0 i=0
e Average number of serving customers in the server:
Ly = E(NS‘) = 0-Pge + 1 'Pbusy
=0-m+1-(1—m)

This is equal to the carried load, which is defined as the average processed load,
ad =a(l—Pg) = AE(S) =p.
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Performance Measure (2/2)

e Average number of waiting customers in the queue:

il—l p2 = A .
= Cl-p  p(p—2)

Additionally, L = Ly + L,,.

e Average sojourn time in the system: From the Little’s formula, L = AW, we obtain

L 1 |
W= E(T)= = — _
== %1 pil—)

e Average waiting time in the queue:

W, =W —E(S) = S

or from the Little’s formula, L, = AW,,, we obtain

L, A P
A u(p=24) p(l-p)

W = Bi1y) =
14



Average Sojourn Time
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Average sojourn time, W
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Traffic intensity, p
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Application

" We consider an uplink of a wireless communication system with N
users and a base station. The N users generate data packets at a Poisson
rate A and the service times of the packets are exponentially distributed
with a mean of 1/u. Determine the average delay.

" Solution: The average delay is equal to the average sojourn time which
1s given by
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3. The M/M/I/K Queue

®  |ntroduction

In practice, queues are always finite. In that case, a new customer is lost when he finds
the system full (e.g., telephone calls). The M /M /1/K may accommodate at most K
customers, including the customer in the service facility, if any. Let A and u be the rate
of the Poisson process for the arrivals and the parameter of the exponential distribution
for the service times, respectively.
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State Transition Rate Diagram

System state: s(7), where i is the number of customers in the system.
Arrival process: ~ PP(A).

Service process: ~ Exp(u).

Steady-state probability: 7;, i =0,1,2,--- | K.

A A A A
H 1 m H

State transition rate diagram for M /M /1 /K
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Steady-state Probability (1/2)

Result (Balance equations for M /M /1/K) In steady-state, we have

ATy = um
A+uW)m =Am_ 1 +umiy, i=1,2,--- , K—1
ATg_1 = Umg
A and from the normalization condition,
T — — 7y
g . K K 712 i
A i, = (—) o = 1
T = (E To f;) E:ZO H
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Steady-state Probability (2/2)

Ii— .
Consequently, if p # 1(A # u), Ty = (l—pffﬂ)pl’ 0<i<K
andm;=0fori>K.Ifp=1(A=pu), m=—_—-

In particular, an incoming customer will be rejected when he sees the state K.
Hence, the probability that an incoming customers is rejected is g, which is called
blocking probability.
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Performance Measure (1/2)

Result (Performance Measure for M/M/1/K)

e Average number of customers in the system: if p # 1,

K K+1
. p (K+1)p
L=E(N)=) im= —
( i;) l_p l_pK—i—l

andif p=1,then L=K/2.
e Average number of serving customers in the server:

Li=ENN,) =0-m+1-(1—mp)

_p(1-p")
[ — pk+1

This is equal to the carried load, @’ = a(1 — Pg) = p(1 — 7k ).
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Performance Measure (2/2)

e Average sojourn time in the system: From the Little’s formula, L = A, W, we obtain

L I
W =E(T) = e A(1— k)

e Average waiting time in the queue:

Wq—W—E(S):W—ﬁ.

or from the Little’s formula, we obtain
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Application

" We consider an uplink of a wireless communication system with N
users and a base station. The N users generate data packets at a Poisson
rate A and the service times of the packets are exponentially distributed
with a mean of 1/u. The base station can store K packets in the queue.
Determine the average delay.

" Solution: The average delay is equal to the average sojourn time which
1s given by
L 1
Ao A(l—mg)

23



Summary

" Queueing Models
— Continuous-Time Birth-Death Process
— The M/M/1 Queue
— The M/M/1/K Queue

" Steady-state Probability

Transition rates

A; when j =i+ | probability of birth in interval Az is A;At
gii=4 Hiifj=i—1 probability of death in interval A7 1s u; At
0 otherwise when the system is in state i

@ a(r) = 7(t)-Q

" Performance Measure
— Average number of customers, Average sojourn time, Average waiting
time
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